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SOME REMARKS ON THE STABILITY OF TIME-VARYING SYSTEMS

A large number of results are presently available for the de-

termination of stability conditions for linear time-varying systems;

among these is the well known "circle criterion" [1] and its variants.

The object of this note is to discuss through examples some of the
results which are of an essentially different nature from the circle
criterion. The examples chosen are of second order but they are
rather illustrative of some of the advantages and difficulties of the

techniques discussed.

Example 1. Consider the system, first discussed by Marcus and

Yamabe [2]

. -1 + a coset 1l -asintcos t
X = Ax; A(t) = 2 ’ (1)
-1 - asintcos t -1+ asint

with a > 0. The state transition matrix for this system is

ic stavility one wmusi have a < 1. The



eigenvalues of the system are given by

N a-2+Ja" b

and are time invariant; they lie in the left-hand plane for a < 2.

Example 2. The second order equation

%+ 2¢x + [1+f(t)]x = O (@)

t

with & >0, |£(t)] <w, and E(£(t)} = lim tlt [ f£(7)ar = 0 is a
t-> w70 ty

simple gneralization of the damped Mathieu equation.
Example 3! Consgider the simple modification of the above equa-
tion

%+ 2g(t)%x + T(t)x = O - (3)

with 0<gsg(t) sg and 0<as £(t) - 25(t) = B.

These three examples constitute the nucleus of the following

discussion.



Stability Results

There seem to be two possible viewpoints for the determination
of stability conditions for time-varying systems. One of these
viewpoints is to insist that the "frozen" system be stable for a
range of variation of the time-varying parameters and then to further
restrict this range and perhaps impose bounds on the rate of change
of these parameters to obtain sufficient conditions for stability.
This is the viewpoint which leads to the circle criterion. It is
self-evident that such a viewpoint can be, in some cases, extremely
restrictive. Stability is a concept which demands observation for
all subsequent times after the starting time, and it is not difficult
to conceive of a system which is alternately frozen time stable and
frozen time unstable but which is asymptotically stable in the sense
of Liapunov. '

.The second possible viewpoint is to consider the time-varying

"average" autonomous system., If this

system as a perturbation on an
average system is asymptotically stable then for sufficiently small
perturbations, in some appropriate sense, it is to be expected that
the time-varying system will be stable. A stability result of this

type in which the averaging is done over the time has been obtained

in [3]:

Theorem. The time-varying system X = A(t)x, A(t) bounded, is
almost surely asymptotically stable if, for some positive

definite matrix B and some € > §



t

. 1 -1 .
lim / MNpaxl A (T)+BA(T)B TldT = -e.
t -5 oto

Furthermore, for sufficiently large times

xt (8)Bx(t) 5 x' (1 )Bx(t_)e (¥t

This theorem represents an attempt to draw information from the be-
havior of the eigenvalues of A(t). Example 1 shows that the eigen-
values of A(t) do not carry a great deal of information; on the
other hand, the above theorem indicates that the "average" in the
time sense of the eigenvalues of A'(t) + BA(t)B_l do. Naturally,
the above theorem only gives sufficient conditions and is not con-
structive in the sense that nothing is said about matrix B. It
should be noted that this result includes the familiar stability
criterion that the eigenvalues of . A'(t) + A(t) be negative.

This simple theorem, in the case of Example 1, yields the best
possible result by letting the matrix B be the identity matrix;
the number € can then be taken as 2 - 2a and then it becomes
necessary for stability that a < 1. From the transition matrix it

is clear that

ezta_l)t 0
x' (£)x(t) = x' (0) i ot x(0)
LY ¢



while the theorem yields =x'(t)x(t) = x'(O)x(O)ee(a-l)t for suf-
ficiently large times.
Perhaps of more interest is the application of this theorem to

Example 2 in standard phase space. In this case letting

an elementary computation yields that ¢ can be taken as

2
he | E{fz} 2

l+§2 l+§2

L
€=2§-

which yields as a sufficient condition for.stability that E{fe} <
hgz. It is interesting to note, in this case, that among the func-
tions f(t) for which the system is asymptotically stable is an odd
periodic square wave of height 2¢ - 8, for some small positive &,
However, for ¢ > % and such a wave the system is not frozen time
stable when f(t) = -2¢ + O.

It is also of interest to compare this result to two recent ones.

Michael [h] has considered by the Liapunov method the equation

%+ 30% + (w2+p cos 2t)x = O




and in this notation, after an appropriate time scaling, the above
result yields as a sufficient condition for asymptotic stability

that
B < -
C

rather than the much more meager and more complicated result obtained
in [h]. The reason for the improvement is évidentt heavy use is
made of averaging of the coefficients., Davidson [5] has recently
published a most interesting stability condition which depends only
on eigenvalue behavior. However, his method does not guarantee
stability for any a > 0 in the case of Example 1 and yields the

rather restrictive sufficient conditions

8,2 10,2
§§ <1+ f(t)<—9—

in the case of Example 2.

This last computation is clearly more in consonance with the
viewpoint of imposing bounds on the variations of the time-varying
parameters than on the averaging indicaﬁed by the quoted theorem,

Along this vain, Brockett [6] has considered the system

%+ 2% 4 £(t)x = O. ()



Brockett's stability results can be extended to the gystem of

Example 3 considered in the form

bde
]

y - 2g(t)x
(5)
= -[£(t)-25(t) ]x.

e
|

It is easily seen, referring to Figure 1 and to the imposed bounds
0<gs=g(t) £g, 0<as f(t) - 25(t) s B, that the worst possible
trajectories in the sense of stability that can be achieved are

given by the autonomous equations

X=y - 2gx

¥=-ox
in region I and in region IT by

X=y -2gx

¥ = -Bx

and by extensions symmetric about the origin. Considering the tra-
jectory AB emerging from (1,0) and the trajectory ED passing
through (-1,0), it is clear that a sufficient condition for

stability of the solutions is that

*p 2 *g



and for asymptotic stability that the strict inequality hold. A
simple but somewhat tedious computation of the solutions of these

equations yields that the above condition becomes

2
g -1 a-g em g€ - 1 P-g

- tan z - tan g

3 Jof = 3 Ve JeE =
a e =B e e N

For g(t) = 1 this condition reduces to the one given by Brockett.
This approach is similar to one followed by Aggarwal [7] for non-

linear second order systems.
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